Description
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics.
Doelstellingen:
– Explore compute and storage options for data engineering workloads in Azure
– Design and Implement the serving layer
– Understand data engineering considerations
– Run interactive queries using serverless SQL pools
– Explore, transform, and load data into the Data Warehouse using Apache Spark
– Perform data Exploration and Transformation in Azure Databricks
– Ingest and load Data into the Data Warehouse
– Transform Data with Azure Data Factory or Azure Synapse Pipelines
– Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
– Optimize Query Performance with Dedicated SQL Pools in Azure Synapse
– Analyze and Optimize Data Warehouse Storage
– Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
– Perform end-to-end security with Azure Synapse Analytics
– Perform real-time Stream Processing with Stream Analytics
– Create a Stream Processing Solution with Event Hubs and Azure Databricks
– Build reports using Power BI integration with Azure Synpase Analytics
– Perform Integrated Machine Learning Processes in Azure Synapse Analytics
Voorkennis:
Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.
– Microsoft Azure Fundamentals | AZ-900
– Microsoft Azure Data Fundamentals | DP-900
Voor wie:
The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.
Inhoud:
– Module 1: Explore compute and storage options for data engineering workloads
– Module 2: Design and implement the serving layer
– Module 3: Data engineering considerations for source files
– Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools
– Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark
– Module 6: Data exploration and transformation in Azure Databricks
– Module 7: Ingest and load data into the data warehouse
– Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines
– Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines
– Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse
– Module 11: Analyze and Optimize Data Warehouse Storage
– Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
– Module 13: End-to-end security with Azure Synapse Analytics
– Module 14: Real-time Stream Processing with Stream Analytics
– Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks
– Module 16: Build reports using Power BI integration with Azure Synpase Analytics
– Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics
Exclusief examen:
DP-203 Data engineering on Microsoft Azure
DutchTrain is een officieel geaccrediteerd Test Center voor Pearson Vue Test, Prometric, Kryterion, Castle Worldwide, Certiport & PSI. U bent bij ons van harte welkom voor examens welke via deze Test Centers beschikbaar zijn. Examens kunnen elke dag, binnen kantooruren, worden afgenomen.
Datum:
Wanneer u op onderstaande link klikt zult u de beschikbare data te zien krijgen.
Bij bestelling kunt u de gewenste trainingsdata invullen in het notitieveld.
Kalender Data Engineering on Microsoft Azure – DP-203 2024
Kalender Data Engineering on Microsoft Azure – DP-203 2025
Duur:
4 dagen
Gerelateerde certificeringen:
– Microsoft Certified Azure Fundamentals
– Microsoft Certified Azure Administrator Associate
– Microsoft Certified Azure Developer Associate
– Microsoft Certified Azure AI Engineer Associate
– Microsoft Certified Azure Data Scientist Associate
– Microsoft Certified Azure Security Engineer Associate
– Microsoft Certified Azure Solutions Architect Expert
– Microsoft Certified Azure DevOps Engineer Expert
Deze training is ook beschikbaar als:
– Education On Demand (e-learning)
– Maatwerktraining, neem hiervoor contact op met een van onze opleidingsadviseurs.
Voor veelgestelde vragen tijdens het bestelproces, bekijk onze F.A.Q. pagina.